Jump to year: 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022
* indicates references utilizing CTEMPs instruments, technical support or guidance
2023
-
*Hatley, R., Shehata, M., Sayde, C. and Castro-Bolinaga, C., 2023. High-Resolution Monitoring of Scour Using a Novel Fiber-Optic Distributed Temperature Sensing Device: A Proof-of-Concept Laboratory Study. Sensors, 23(7), p.3758. https://doi.org/10.3390/s23073758
-
*Hiscox, A., Bhimireddy, S., Wang, J., Kristovich, D.A., Sun, J., Patton, E.G., Oncley, S.P. and Brown, W.O., 2023. Exploring influences of shallow topography in stable boundary layers: The SAVANT Field Campaign. Bulletin of the American Meteorological Society. 10.1175/BAMS-D-21-0332.1
-
*Shehata, M., Gentine, P., Nelson, N. and Sayde, C., 2023. Optimization of the Number and Locations of the Calibration Stations Needed to Monitor Soil Moisture using Distributed Temperature Sensing systems: A Proof-of-Concept Study. Journal of Hydrology, p.129449. https://doi.org/10.1016/j.jhydrol.2023.129449
2022
-
* Bond, R.M., Kiernan, J.D., Osterback, A.M.K., Kern, C.H., Hay, A.E., Meko, J.M., Daniels, M.E. and Perez, J.M., 2022. Spatiotemporal Variability in Environmental Conditions Influences the Performance and Behavior of Juvenile Steelhead in a Coastal California Lagoon. Estuaries and Coasts, pp.1-17. 10.1007/s12237-021-01019-9
-
*Dotto, T.S., K.J. Heywood, R.A.Hall, T. A. Scambos, Y. Zheng, Y. Nakayama, S. Hyogo, T. Snow, A. Wahlin, C. Wild, M. Truffer, A. Muto, K. E. Alley, L. Boehme, G. A. Bortolotto, S.W. Tyler and E. Pettit. (2022) Ocean variability beneath Thwaites Eastern Ice Shelf driven by the Pine Island Bay Gyre strength. Nature Communications, https://doi.org/10.1038/s41467-022-35499-5
-
*Lucas, A.J. and Pinkel, R., 2022. Observations of coherent transverse wakes in shoaling nonlinear internal waves. Journal of Physical Oceanography, 52(6), pp.1277-1293. 10.1175/JPO-D-21-0059.1
-
*Simon, N., Bour, O., Faucheux, M., Lavenant, N., Le Lay, H., Fovet, O., Thomas, Z. and Longuevergne, L., 2022. Combining passive and active distributed temperature sensing measurements to locate and quantify groundwater discharge variability into a headwater stream. Hydrology and Earth System Sciences, 26(5), pp.1459-1479.
-
*Tyler, S.W., J. Selker, N. Van de Giesen, T. Bogaard and J. Aguilar-Lopez. (2022). Distributed Fiber-optics Hydrogeophysics. In The Groundwater Project Series. https://doi.org/10.21083/978-1-77470-031-0.
2021
10 CTEMPs supported
-
*DeBell, T.C., 2021. A Novel Approach to High-Resolution Monitoring of Subsurface Water Dynamics in Media Based Treatment Practices (Master's thesis, North Carolina State University).
-
Del Val, L., Carrera, J., Pool, M., Martínez, L., Casanovas, C., Bour, O. and Folch, A., 2021. Heat Dissipation Test With Fiber‐Optic Distributed Temperature Sensing to Estimate Groundwater Flux. Water Resources Research, 57(3), p.e2020WR027228.
-
*Drake, S., Higgins, C. and Pardyjak, E., 2021. Distinguishing Time Scales of Katabatic Flow in Complex Terrain. Atmosphere, 12(12), p.1651. https://doi.org/10.3390/atmos12121651
-
*Hall, A., & Selker, J. S. (2021). High-resolution temperature modeling of stream reconstruction alternatives. River Research and Applications, 1– 12. https://doi.org/10.1002/rra.3824
-
*Law, R., Christoffersen, P., Hubbard, B., Doyle, S.H., Chudley, T.R., Schoonman, C.M., Bougamont, M., des Tombe, B., Schilperoort, B., Kechavarzi, C. and Booth, A., 2021. Thermodynamics of a fast-moving Greenlandic outlet glacier revealed by fiber-optic distributed temperature sensing. Science Advances, 7(20), p.eabe7136. DOI: 10.1126/sciadv.abe7136
-
*Lucas, A.J. and Pinkel, R., 2022. Observations of coherent transverse wakes in shoaling nonlinear internal waves. Journal of Physical Oceanography. https://doi.org/10.1175/JPO-D-21-0059.1
-
*Mohamed, R.A., Gabrielli, C., Selker, J.S., Selker, F., Brooks, S.C., Ahmed, T. and Carroll, K.C., 2021. Comparison Of Fiber-Optic Distributed Temperature Sensing And High-Sensitivity Sensor Spatial Surveying Of Stream Temperature. Journal of Hydrology, p.127015. https://doi.org/10.1016/j.jhydrol.2021.127015
-
*Morrison, T., Calaf, M., Higgins, C.W., Drake, S.A., Perelet, A. and Pardyjak, E., 2021. The impact of surface temperature heterogeneity on near-surface heat transport. Boundary-Layer Meteorology, pp.1-26.
-
Simon, N., Bour, O., Lavenant, N., Porel, G., Nauleau, B., Pouladi, B., Longuevergne, L. and Crave, A., 2021. Numerical and experimental validation of the applicability of active‐DTS experiments to estimate thermal conductivity and groundwater flux in porous media. Water Resources Research, 57(1), p.e2020WR028078.
-
*Thomas C.K., Selker J. (2021) Optical Fiber-Based Distributed Sensing Methods. In: Foken T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_20
-
*Wu, R., 2021. Fiber Optic Distributed Temperature Sensing of Soil Moisture in Waste Rock (Doctoral dissertation, McGill University (Canada))
-
*Wu, R., Martin, V., McKenzie, J.M., Broda, S., Bussière, B., Selker, J. and Aubertin, M., 2021. Fiber optic measurements of soil moisture in a waste rock pile. Groundwater. 59: 549-561. https://doi.org/10.1111/gwat.13075
-
Wu, R., Lamontagne-Hallé, P. and McKenzie, J.M., 2021. Uncertainties in Measuring Soil Moisture Content with Actively Heated Fiber-Optic Distributed Temperature Sensing. Sensors, 21(11), p.3723.
2020
10 CTEMPs supported
-
Abesser, C., Ciocca, F., Findlay, J., Hannah, D., Blaen, P., Chalari, A., Mondanos, M. and Krause, S., 2020. A Distributed Heat Pulse Sensor Network for Thermo-Hydraulic Monitoring of the Soil Subsurface. Quarterly Journal of Engineering Geology and Hydrogeology 53(3), pp.352-365.
-
Apperl, B., Bernhardt, M. and Schulz, K., 2020. Towards Improved Field Application of Using Distributed Temperature Sensing for Soil Moisture Estimation: A Laboratory Experiment. Sensors, 20(1), p.29.
-
*Baldassare, D., 2020. Quantifying the Effects of Surface Thermal Heterogeneity on Dispersive Fluxes in an Idealized Environment (Doctoral dissertation). University of Nevada, Reno.
-
*Caldwell, T. G., B. D. Wolaver, T. Bongiovanni, J. P. Pierre, S. Robertson, C. Abolt, and B. R. Scanlon (2020), Spring discharge and thermal regime of a groundwater dependent ecosystem in an arid karst environment, Journal of Hydrology, 587, doi: 10.1016/j.jhydrol.2020.124947
-
*Cheng, Y., Li, Q., Argentini, S., Sayde, C., & Gentine, P. A model for Turbulence Spectra in the Equilibrium Range of the Stable Atmospheric Boundary Layer. Journal of Geophysical Research: Atmospheres, e2019JD032191. doi: 10.1029/2019JD032191
-
*Davis, K.A., Arthur, R.S., Reid, E.C., Rogers, J.S., Fringer, O.B., DeCarlo, T.M. and Cohen, A.L., 2020. Fate of internal waves on a shallow shelf. Journal of Geophysical Research: Oceans, 125(5), p.e2019JC015377. doi: 10.1029/2019JC015377
-
des Tombe, B., Schilperoort, B. and Bakker, M., 2020. Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing. Sensors, 20(8), p.2235.
-
Folch, A., Del Val, L., Luquot, L., Martínez-Pérez, L., Bellmunt, F., Le Lay, H., Rodellas, V., Ferrer, N., Palacios, A., Fernández, S. and Marazuela, M.A., 2020. Combining fiber optic DTS, cross-hole ERT and time-lapse induction logging to characterize and monitor a coastal aquifer. Journal of Hydrology, 588, p.125050.
-
*Hall, A., Chiu, Y.C. and Selker, J.S., 2020. Coupling high‐resolution monitoring and modelling to verify restoration‐based temperature improvements. River Research and Applications. 36(8), 1430-1441. doi: 10.1002/rra.3668
-
Lagos, M., Serna, J.L., Muñoz, J.F. and Suárez, F., 2020. Challenges in determining soil moisture and evaporation fluxes using distributed temperature sensing methods. Journal of Environmental Management, 261, p.110232.
-
Le Lay, H., Thomas, Z., Bour, O., Rouault, F., Pichelin, P. and Moatar, F., 2020. Experimental and model‐based investigation of the effect of the free‐surface flow regime on the detection threshold of warm water inflows. Water Resources Research, 56(2), p.e2018WR023722.
-
Medina, R., Pham, C., Plumlee, M.H., Hutchinson, A., Becker, M.W. and O’Connell, P.J., 2020. Distributed temperature sensing to measure infiltration rates across a groundwater recharge basin. Groundwater.
-
Munn, J.D., Maldaner, C.H., Coleman, T.I. and Parker, B.L., 2020. Measuring fracture flow changes in a bedrock aquifer due to open hole and pumped conditions using active distributed temperature sensing. Water Resources Research, 56(10), p.e2020WR027229.
-
*Reid, E.C., Lentz, S.J., DeCarlo, T.M., Cohen, A.L. and Davis, K.A., Physical processes determine spatial structure in water temperature and residence time on a wide reef flat. Journal of Geophysical Research: Oceans, 125(12) p.e2020JC016543. doi: 10.1029/2020JC016543
-
*Selker, J.S., Selker, F., Llamas, R., Kruger, A., Niemeier, J., Najm, M.A., van de Giesen, N., Hut, R., van Emmerik, T., Lane, J.W. and Rupp, D.E., 2020. Lessons in New Measurement Technologies: From Instrumenting Trees to the Trans-African Hydrometeorological Observatory. In Forest-Water Interactions (pp. 131-144). Springer, Cham. doi: 10.1007/978-3-030-26086-6_6
-
Silixa. 2020. Introduction to Distributed Temperature Sensing. https://silixa.com/resources/downloads/introduction-to-distributed-tempe...
-
Simon, N., Bour, O., Lavenant, N., Porel, G., Nauleau, B., Pouladi, B. and Longuevergne, L., 2020. A Comparison of Different Methods to Estimate the Effective Spatial Resolution of FO-DTS Measurements Achieved during Sandbox Experiments. Sensors, 20(2), p.570.
-
*Sinnett, G., Davis, K., Lucas, A.J., Giddings, S.N., Reid, E., Harvey, M. and Stokes, I., 2020. Distributed Temperature Sensing for Oceanographic Applications. Journal of Atmospheric and Oceanic Technology, 37(11), pp.1987-1997. doi: 10.1175/JTECH-D-20-0066.1
-
Stutsel, B.M., Callow, J.N., Flower, K.C., Biddulph, T.B. and Issa, N.A., 2020. Application of distributed temperature sensing using optical fibre to understand temperature dynamics in wheat (triticum aestivum) during frost. European Journal of Agronomy, 115, p.126038.
-
*van Ramshorst, J.G., Coenders-Gerrits, M., Schilperoort, B., van de Wiel, B.J., Izett, J.G., Selker, J.S., Higgins, C.W., Savenije, H.H. and van de Giesen, N.C., 2020. Revisiting wind speed measurements using actively heated fiber optics: a wind tunnel study. Atmospheric Measurement Techniques, 13(10), pp.5423-5439. doi: 10.5194/amt-13-5423-2020
-
*Wu, R., Martin, V., McKenzie, J., Broda, S., Bussière, B., Aubertin, M. and Kurylyk, B.L., 2020. Laboratory-scale assessment of a capillary barrier using fibre optic distributed temperature sensing (FO-DTS). Canadian Geotechnical Journal, 57(1), pp.115-126.
-
Zhang, B., Gu, K., Shi, B., Liu, C., Bayer, P., Wei, G., Gong, X. and Yang, L., 2020. Actively heated fiber optics based thermal response test: A field demonstration. Renewable and Sustainable Energy Reviews, 134, p.110336.
Back to top
2019
11 CTEMPs supported
-
*Arnon, A., Brenner, S., Selker, J.S., Gertman, I. and Lensky, N.G., 2019. Seasonal dynamics of internal waves governed by stratification stability and wind: Analysis of high‐resolution observations from the Dead Sea. Limnology and Oceanography. https://doi.org/10.1002/lno.11156
-
Bakx, W., Doornenbal, P.J., Van Weesep, R.J., Bense, V.F., Oude Essink, G.H. and Bierkens, M.F., 2019. Determining the relation between groundwater flow velocities and measured temperature differences using active heating-distributed temperature sensing. Water, 11(8), p.1619.
-
Cao, D.F., Shi, B., Zhu, H.H., Tang, C.S., Song, Z.P., Wei, G.Q. and Garg, A., 2019. Characterization of Soil Moisture Distribution and Movement Under the Influence of Watering-dewatering Using AHFO and BOTDA Technologies. Environmental and Engineering Geoscience, 25(3), pp.189-202.
-
*Connolly, T.P. and Kirincich, A.R., High‐resolution observations of subsurface fronts and alongshore bottom temperature variability over the inner shelf. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2018JC014454
-
des Tombe, B.F., Bakker, M., Smits, F., Schaars, F. and van der Made, K.J., 2019. Estimation of the variation in specific discharge over large depth using Distributed Temperature Sensing (DTS) measurements of the heat pulse response. Water Resources Research, 55(1), pp.811-826. https://doi.org/10.1029/2018WR024171
-
*Dexheimer, D., Airey, M., Roesler, E., Longbottom, C., Nicoll, K., Kneifel, S., Mei, F., Harrison, R.G., Marlton, G. and Williams, P.D., 2019. Evaluation of ARM tethered-balloon system instrumentation for supercooled liquid water and distributed temperature sensing in mixed-phase Arctic clouds. Atmospheric Measurement Techniques, 12(12), pp.6845-6864. https://doi.org/10.5194/amt-12-6845-2019
-
*Domanski, M., Quinn, D., Day‐Lewis, F.D., Briggs, M.A., Werkema, D. and Lane, J.W., 2019. DTSGUI: A Python program to process and visualize fiber‐optic distributed temperature sensing data. Groundwater. https://doi.org/10.1111/gwat.12974
-
*Dzara, J.R., Neilson, B.T. and Null, S.E., 2019. Quantifying thermal refugia connectivity by combining temperature modeling, distributed temperature sensing, and thermal infrared imaging. Hydrology and Earth System Sciences, 23(7), p.2965. https://www.hydrol-earth-syst-sci.net/23/2965/2019/
-
Gaona, J., Meinikmann, K. and Lewandowski, J., 2019. Identification of groundwater exfiltration, interflow discharge, and hyporheic exchange flows by fibre optic distributed temperature sensing supported by electromagnetic induction geophysics. Hydrological processes, 33(10), pp.1390-1402.
-
*Gilmore, T. E., Johnson, M., Korus, J., Mittelstet, A., Briggs, M. A., Zlotnik, V., & Corcoran, S. (2019). Streambed Flux Measurement Informed by Distributed Temperature Sensing Leads to a Significantly Different Characterization of Groundwater Discharge. Water, 11(11), 2312.
-
Glose, T.J., Lowry, C.S. and Hausner, M.B., 2019. Vertically Integrated Hydraulic Conductivity: A New Parameter for Groundwater‐Surface Water Analysis. Groundwater, 57(5), pp.727-736.
-
*Higgins, C.W., Drake, S., Kelley, J.R., Oldroyd, H.J., Jensen, D. and Wharton, S., 2019. Rapid Resolution of the Atmospheric response to the 2017 total solar eclipse. Frontiers in Earth Science, 7, p.198.
-
*Lapo, K., Freundorfer, A., Pfister, L., Schneider, J., Selker, J., & Thomas, C. (2019). Distributed observations of wind direction using microstructures attached to actively heated fiber-optic cables. Atmospheric Measurement Techniques. https://doi.org/10.5194/amt-2019-188
-
*Mahrt, L., Pfister, L. and Thomas, C.K., 2019. Small-Scale Variability in the Nocturnal Boundary Layer. Boundary-Layer Meteorology, pp.1-18. doi:10.1007/s10546-019-00476-x
-
*Pfister, L., Lapo, K., Sayde, C., Selker, J., Mahrt, L. and Thomas, C.K., Classifying the Nocturnal Atmospheric Boundary Layer into Temperature and Flow Regimes. Quarterly Journal of the Royal Meteorological Society.
-
*Reid, E.C., DeCarlo, T.M., Cohen, A.L., Wong, G.T., Lentz, S.J., Safaie, A., Hall, A. and Davis, K.A., 2019. Internal waves influence the thermal and nutrient environment on a shallow coral reef. Limnology and Oceanography. https://doi.org/10.1002/lno.11162
-
Sakaki, T., Lüthi, B.F., Vogt, T., Uyama, M. and Niunoya, S., 2019. Heated fiber-optic cables for distributed dry density measurements of granulated bentonite mixtures: Feasibility experiments. Geomechanics for Energy and the Environment, 17, pp.57-65.
-
Solcerova, A., van de Ven, F. and Van De Giesen, N., 2019. Nighttime cooling of an urban pond. Frontiers in earth science, 7, p.156.
-
Vidana Gamage, D.N., Biswas, A. and Strachan, I.B., 2019. Field Water Balance Closure with Actively Heated Fiber-Optics and Point-Based Soil Water Sensors. Water, 11(1), p.135.
-
Zubelzu, S., Rodriguez-Sinobas, L., Saa-Requejo, A., Benitez, J. and Tarquis, A.M., 2019. Assessing soil water content variability through active heat distributed fiber optic temperature sensing. Agricultural Water Management, 212, pp.193-202.
Back to top
2018
8 CTEMPs supported
-
Cao, D., Shi, B., Loheide II, S.P., Gong, X., Zhu, H.H., Wei, G. and Yang, L., 2018. Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A–DTS) technology. Energy and Buildings, 173, pp.239-251.
-
Failleau, G., Beaumont, O., Razouk, R., Delepine-Lesoille, S., Landolt, M., Courthial, B., Hénault, J.M., Martinot, F., Bertrand, J. and Hay, B., 2018. A metrological comparison of Raman-distributed temperature sensors. Measurement, 116, pp.18-24.
-
He, H., Dyck, M.F., Horton, R., Li, M., Jin, H. and Si, B., 2018. Distributed temperature sensing for soil physical measurements and its similarity to heat pulse method. In Advances in agronomy (Vol. 148, pp. 173-230). Academic Press.
-
*Higgins, C.W., Wing, M.G., Kelley, J., Sayde, C., Burnett, J. and Holmes, H.A., 2018. A high resolution measurement of the morning ABL transition using distributed temperature sensing and an unmanned aircraft system. Environmental Fluid Mechanics, 18(3), pp.683-693.
-
*Klepikova, M, C. Roques, J.S. Selker. (2018) Improved characterization of groundwater flow in heterogeneous aquifers using granular polyacrylamide (PAM) gel as temporary grout, Wat. Resour. Res., 54, 1410–1419. https://doi. org/10.1002/2017WR022259.
-
McDaniel, A., Fratta, D., Tinjum, J.M. and Hart, D.J., 2018. Long-term district-scale geothermal exchange borefield monitoring with fiber optic distributed temperature sensing. Geothermics, 72, pp.193-204.
-
McDaniel, A., Tinjum, J.M., Hart, D.J. and Fratta, D., 2018. Dynamic Calibration for Permanent Distributed Temperature Sensing Networks. IEEE Sensors Journal, 18(6), pp.2342-2352.
-
*Selker, F. and J.S. Selker, (2018) Investigating Water Movement Within and Near Wells Using Active Point Heating and Fiber Optic Distributed Temperature Sensing, Sensors: 18(4) 1023.
-
Shanafield, M., Banks, E.W., Arkwright, J.W. and Hausner, M.B., 2018. Fiber‐Optic Sensing for Environmental Applications: Where We Have Come From and What Is Possible. Water Resources Research, 54(11), 8552-8557. doi: 10.1029/2018WR022768
-
Schilperoort, B., Coenders-Gerrits, M., Luxemburg, W., Rodríguez, C.J., Vaca, C.C. and Savenije, H., 2018. Using distributed temperature sensing for Bowen ratio evaporation measurements. Hydrology and earth system sciences, 22(1), p.819.
-
*Solcerova, A., T. van Emmerik, F. van de Ven, J.S. Selker, N. van de Giesen, (2018). Skin effect of fresh water measured using Distributed Temperature Sensing, Water, 10(2), 214; https://doi.org/10.3390/w10020214.
-
*Surfleet, C. and Louen, J., 2018. The Influence of Hyporheic Exchange on Water Temperatures in a Headwater Stream. Water, 10(11), p.1615.
-
*Tangney, Ryan; Issa, Nader; Marritt, David; Callow, John; and Miller, Ben. (2018) A method for extensive spatiotemporal assessment of soil temperatures during an experimental fire using distributed temperature sensing in optical fibre. International Journal of Wildland Fire. DOI: 10.1071/WF17107
-
*Tauro, F, J.S. Selker, and 28 others,(2018) Measurements and Observations in the XXI century (MOXXI): innovation and multi-disciplinarity to sense the hydrological cycle. Hydrological Sciences Journal, DOI 10.1080/02626667.2017.1420191.
-
Vélez Márquez, M.I., Raymond, J., Blessent, D., Philippe, M., Simon, N., Bour, O. and Lamarche, L., 2018. Distributed thermal response tests using a heating cable and fiber optic temperature sensing. Energies, 11(11), p.3059.
-
Vidana Gamage, D.N., Biswas, A., Strachan, I.B. and Adamchuk, V.I., 2018. Soil water measurement using actively heated fiber optics at field scale. Sensors, 18(4), p.1116.
-
*Wilson, C; Papanicolaou, A; Abban, B; Keefer, L; Wacha, K; Dermisis, D.; and 27 others. (2018). The Intensively Managed Landscape Critical Zone Observatory: A scientific testbed for understanding critical zone processes in agroecosystems. Vadose Zone Journal. doi: 10.2136/vzj2018.04.0088
Back to top
2017
9 CTEMPs supported
-
Feasibility of Locating Leakages in Sewage Pressure Pipes Using the Distributed Temperature Sensing Technology.
Apperl, Benjamin, Alexander Pressl, and Karsten Schulz, Water, Air, & Soil Pollution 2, no. 228 (2017): 1-13.
-
Bersan, S.; Koelewijn, A.R.; Simonini, P. Effectiveness of distributed temperature measurements for early detection of piping in river embankments. Hydrol. Earth Syst. Sci. Discuss. 2017, 1–30
-
Bersan, S.; Schenato, L.; Rajendran, A.; Palmieri, L.; Cola, S.; Pasuto, A.; Simonini, P. Application of a high resolution distributed temperature sensor in a physical model reproducing subsurface water flow. Measurement 2017, 98, 321–324
-
*Observations of bedload transport in a gravel bed river during high flow using fiber‐optic DTS methods.
Bray, Erin N., and Thomas Dunne, Earth Surface Processes and Landforms, doi:10.1002/esp.4164, 2017.
-
*Failure of Taylor's hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements.
Cheng, Y., C. Sayde, Q. Li, J. Basara, J.S. Selker, E. Tanner, P. Gentine, Geophys. Res. Lett., 44 (9) 4287-4295. 10.1002/2017GL073499, 2017.
-
Dong, J., Agliata, R., Steele-Dunne, S., Hoes, O., Bogaard, T., Greco, R. and Van de Giesen, N., 2017. The impacts of heating strategy on soil moisture estimation using actively heated fiber optics. Sensors, 17(9), p.2102.
-
*Measurement and simulation of heat exchange in fractured bedrock using inert and thermally degrading tracers.
Hawkins, A.J., Fox, D.B., Becker, M.W. and Tester, J.W., 2017. Water Resources Research, 53(2), pp.1210-1230.
-
Irvine, D.J., Briggs, M.A., Lautz, L.K., Gordon, R.P., McKenzie, J.M. and Cartwright, I., 2017. Using diurnal temperature signals to infer vertical groundwater‐surface water exchange. Groundwater, 55(1), pp.10-26.
-
*Air/water/sediment temperature contrasts in small streams to identify groundwater seepage locations.
Karan, Sachin, Eva Sebok, and Peter Engesgaard, Hydrological Processes 31, no. 6 (2017): 1258-1270.
-
Leach, J.A., Lidberg, W., Kuglerová, L., Peralta‐Tapia, A., Ågren, A. and Laudon, H., 2017. Evaluating topography‐based predictions of shallow lateral groundwater discharge zones for a boreal lake‐stream system. Water Resources Research, 53(7), pp.5420-5437.
-
*Nocturnal Near-Surface Temperature, but not Flow Dynamics, can be Predicted by Microtopography in a Mid-Range Mountain Valley.
Pfister, L., Sigmund, A., Olesch, J. and Thomas, C.K., 2017. Boundary-Layer Meteorology, 165(2), pp.333-348
-
*Powers, C.W., Predosa, R., Higgins, C. and Schmale III, D.G., 2017. Mobile distributed temperature sensing of the air–water interface of an aquatic environment with an unmanned surface vehicle. Journal of Unmanned Vehicle Systems, 6(1), pp.43-56.
-
Schenato, Luca. 2017. A Review of Distributed Fibre Optic Sensors for Geo-Hydrological Applications, Sensors 7(9), 896; https://doi.org/10.3390/app7090896
-
*Quantitative analysis of the radiation error for aerial coiled-fiber-optic distributed temperature sensing deployments using reinforcing fabric as support structure.
Sigmund, Armin, Lena Pfister, Chadi Sayde, and Christoph K. Thomas, Atmospheric Measurement Techniques 10, no. 6 (2017): 2149.
-
*Measuring Tree Properties and Responses Using Low-Cost Accelerometers
van Emmerik, T., S. Steele-Dunne, R. Hut, P. Gentine, M. Guerin, R. Oliveira, J. Wagner, J.S. Selker, and N. van De Giesen. Sensors, 17(5), 1098; doi:10.3390/s17051098. 2017
-
*Downhole Distributed Temperature Sensing in Fractured Rock.
Vitale, M., Selker, F., Selker, J., Young, P. Journal of the Nevada Water Resources Association, p. 17-31. DOI: 10.22542/4, 2017.
Back to top
2016
19 CTEMPs supported
-
*Thermohaline stratification and double diffusion diapycnal fluxes in the hypersaline Dead Sea
Arnon, A., J.S. Selker, N.G. Lensky. Limnology and Oceanography, doi: 10.1002/lno.10285, 2016.
-
*Calibration of soil moisture sensing with subsurface heated fiber optics using numerical simulation,
Benítez-Buelga, J., L. Rodríguez-Sinobas, R. Sánchez-Calvo, M. Gil-Rodríguez, C. Sayde, and J. S. Selker. Water Resour. Res., 52, 2985–2995, (2016) doi:10.1002/2015WR017897.
-
*Distributed Temperature Sensing as a down-hole tool in hydrogeology.
Bense, V. F., Read, T., O. Bour, T. Leborgne, T. Coleman, S. Krause, A. Chalari, M. Mondanos, F. Ciocca , J.S. Selker, Wat. Resour. Res., 52(12): 9259–9273, DOI 10.1002/2016WR018869, 2016.
-
*Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux.
Bense, V. F., Tom Read, and Anne Verhoef, Agricultural and Forest Meteorology 220 (2016): 207-215.
-
*The Soil Moisture Active Passive Marena Oklahoma In Situ Sensor Testbed (SMAP-MOISST): Design and Initial Results.
Cosh, M.H., T.E. Ochsner, L. McKee, J. Dong, J. Basara, S.R. Evett, C. Hatch, E. Small, S. Steele-Dunne, M. Zreda, and C. Sayde. Vadose Zone J. (2016) doi:10.2136/vzj2015.09.0122
-
*Use of Distributed Temperature Sensing Technology to Characterize Fire Behavior.
Cram, D., C. Ochoa, C. Hatch and S. Tyler (2016). Sensors. 16, 1712; doi:10.3390/s16101712
-
*Mapping high-resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother.
Dong, J., S.C. Steele-Dunne, T.E. Ochsner, C.E. Hatch, C. Sayde, J.S. Selker, S. Tyler, M.H. Cosh, N. van de Giesen, Wat. Resour. Res., 52(10): 7690–7710, 10.1002/2016WR019031, 2016.
-
*Attenuation of wind-induced pressure perturbations in alpine snow.
Drake, S.A., H, Huwald, M.B. Parlange, J.S. Selker, A.W. Nolin, and C.W. Higgins. J. of Glaciology, 62 (234), 674-683. (2016).
-
Halloran, L.J., Roshan, H., Rau, G.C., Andersen, M.S. and Acworth, R.I., 2016. Improved spatial delineation of streambed properties and water fluxes using distributed temperature sensing. Hydrological Processes, 30(15), pp.2686-2702.
-
*Identifying and Correcting Step Losses in Single-Ended Fiber-Optic Distributed Temperature Sensing Data
Hausner, M. B., Kobs, S. Journal of Sensors, vol. 2016, Article ID 7073619, 10 pages, 2016. doi:10.1155/2016/7073619
-
*Interpreting variations in groundwater flows from repeated distributed thermal perturbation tests.
Hausner, M.B., Kryder, L., Klenke, J., Reinke, R., and Tyler, S.W. (2016). Groundwater, doi: 10.1111/gwat.12393.
-
*Projecting the effects of climate change and water management on Devils Hole pupfish (Cyprinodon diabolis) survival
Hausner, M. B., Wilson, K. P., Gaines, D. B., Suárez, F., Scoppettone, G. G., and Tyler, S. W. Ecohydrol., 9: 560–573. doi:10.1002/eco.1656. 2016
-
*Meso-Scale Field Testing of Reactive Tracers in a Model Geothermal Reservoir
Hawkins, A.J., Fox, D., Becker, M., and Tester, J. 2016. PROCEEDINGS, 41st Workshop on Geothermal Reservoir Engineering
-
*Practical considerations for enhanced-resolution coil-wrapped Distributed Temperature Sensing
Hilgersom K.P., T.H.M. van Emmerik, A. Solcerova, W.R. Berghuijs, J.S. Selker, N. C. van de Giesen. Geosci. Instrum. Method. Data Syst., 5, 151–162, (2016)
-
Hilgersom, K.P., Van De Giesen, N.C., de Louw, P.G.B. and Zijlema, M., 2016. Three‐dimensional dense distributed temperature sensing for measuring layered thermohaline systems. Water Resources Research, 52(8), pp.6656-6670.
-
*Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics
Huang, X., Andrews, C. B., Liu, J., Yao, Y., Liu, C., Tyler, S. W., Selker, J. S. and Zheng, C. Water Resour. Res. 52 doi:10.1002/2015WR018408, 2016
-
*Proof of concept: Temperature-sensing waders for environmental sciences.
Hut, R., S. Tyler rand T. van Emmerik (2016). Geosci. Instrum. Methods and Data Sys. doi:10.5194/gi-5-45-2016.
-
Liu, C., Liu, J., Wang, X.S. and Zheng, C., 2016. Analysis of groundwater–lake interaction by distributed temperature sensing in Badain Jaran Desert, Northwest China. Hydrological Processes, 30(9), pp.1330-1341.
-
*Polymictic pool behaviour in a montane meadow, Sierra Nevada, CA.
Lucas, R. G., Suárez, F., Tyler, S. W., Moran, J. E., & Conklin, M. H. Hydrological Processes 30: 3274–3288. doi: 10.1002/hyp.10834. (2016)
-
Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand‐bed stream.
Rosenberry, Donald O., Martin A. Briggs, Geoffrey Delin, and Danielle K. Hare, Water Resources Research 52, no. 6 (2016): 4486-4503.
-
*Evaluation of a discrete-depth heat dissipation test for thermal characterization of the subsurface
Sellwood, S. M., Bahr, J. M., & Hart, D. J. Geological Society of America Special Papers 519, 67-79. (2016)
-
*Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing.
Seyfried, Mark, Timothy Link, Danny Marks, and Mark Murdock, Vadose Zone Journal 15, no. 6 (2016).
-
Sourbeer, J.J.; Loheide, S.P. Obstacles to long-term soil moisture monitoring with heated distributed temperature sensing. Hydrol. Process. 2016, 30, 1017–1035
Back to top
2015
16 CTEMPs supported
-
An active heat tracer experiment to determine groundwater velocities using fiber optic cables installed with direct push equipment
Bakker, M., Caljé, R., Schaars, F., van der Made, K.-J. & de Haas, S. Water Resour. Res. 51, 2760–2772 (2015).
-
*Sensitivity of summer stream temperatures to climate variability and riparian reforestation strategies
Bond, R. M., Stubblefield, A. P. & Kirk, R. W. Van. J. Hydrol. Reg. Stud. 4, Part B, 267–279 (2015).
-
*Groundwater flow characterization in a fractured bedrock aquifer using active DTS tests in sealed boreholes
Coleman, T., Parker, B. L., Maldaner, C. H. & Mondanos, M. J. J. Hydrol. 528, 449–462 (2015).
-
De Jong, S.A.P., Slingerland, J.D. and Van de Giesen, N.C., 2015. Fiber optic distributed temperature sensing for the determination of air temperature. Atmospheric Measurement Techniques, 8(1).
-
Observations of distributed snow depth and snow duration within diverse forest structures in a maritime mountain watershed.
Dickerson-Lange, S. E. et al. Water Resour. Res. n/a–n/a (2015). doi:10.1002/2015WR017873
-
Determining soil moisture by assimilating soil temperature measurements using the Ensemble Kalman Filter.
Dong, J., Steele-Dunne, S. C., Ochsner, T. E. & van de Giesen, N. Adv. Water Resour. (2015). doi:10.1016/j.advwatres.2015.08.011
-
A particle batch smoother for soil moisture estimation using soil temperature observations.
Dong, J., Steele-Dunne, S. C., Judge, J. & van de Giesen, N. Adv. Water Resour. 83, 111–122 (2015).
-
*The MATERHORN – Unraveling the Intracacies of Mountain Weather
Fernando HJS, Pardyjak ER, Di Sabatino S, Chow F, DeWekker S, Hoc SW, Hacker J, Pace J, Pratt T, Pu Z, Steenburgh J, Whiteman CD, Wang Y, Zajic D, Balsley B, Dimitrova R, Emmitt D, Higgins CW, Hunt JCR, Knievel J, Lawrence D, Nadeau D, Kit E, Blomquist B, Conry P, Coppersmith RS, Creegan E, Felton M, Grachev A, Gunawardena N, Hang C, Hocut C, Huynh G, Jeglum ME, Jensen D, Kulandaivelu V, Lehner M, Leo LS, , Liberzon D, Massey J, McEnerney K, Pal S, Sghiatti M, Silver Z, Thomson M, Zhang H, Zsedrovits T. Bulletin of the Amerian Meteorological Society, 2015, doi: http://dx.doi.org/10.1175/BAMS-D-13-00131.1.
-
*High Geothermal Heat Flux Measured below the West Antarctic Ice Sheet
Fisher, A. T. et al. Sci. Adv. (2015). doi:10.1126/sciadv.1500093
-
*A field comparison of multiple techniques to quantify groundwater–surface-water interactions
Gonzalez-Pinzon, R. et al. Freschwater Sci. 34 (1), 139–160 (2015).
-
*A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water
Hare, D. K., Briggs, M. A., Rosenberry, D. O., Boutt, D. F. & Lane, J. W. J. Hydrol. 530:153-66 (2015). doi:http://dx.doi.org/10.1016/j.jhydrol.2015.09.059
-
Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT.
Hermans, T. et al. Geothermics 53, 14–26 (2015).
-
*Frontiers in real-time ecohydrology – a paradigm shift in understanding complex environmental systems
Krause, S., Lewandowski, J., Dahm, C. N. & Tockner, K. . Ecohydrology 8, 529–537 (2015).
-
*Groundwater–surface-water interactions: current research directions.
Larned, S. T., Gooseff, M. N., Packman, A. I., Rugel Kathleen & Wondzell, S. M. Freshw. Sci. 34, 92–98 (2015).
-
Investigation of Stream Temperature Response to Non-Uniform Groundwater Discharge in a Danish Lowland Stream.
Matheswaran, K., Blemmer, M., Thorn, P., Rosbjerg, D. & Boegh, E. River Res. Appl. 31, 975–992 (2015).
-
Mondanos, M., Parker, T., Milne, C.H., Yeo, J., Coleman, T. and Farhadiroushan, M., 2015, May. Distributed temperature and distributed acoustic sensing for remote and harsh environments. In Sensors for Extreme Harsh Environments II (Vol. 9491, p. 94910F). International Society for Optics and Photonics.
-
*Technical Note: Bed conduction impact on fiber optic DTS water temperature measurements.
O’Donnell Meininger, T. & Selker, J. S. Geosci. Instrumentation, Methods Data Syst. Discuss. 4, 19-22 (2015).
-
*Thermal-Plume fibre Optic Tracking (T-POT) test for flow velocity measurement in groundwater boreholes
Read, T. et al. Geosci. Instrumentation, Methods Data Syst. Discuss. 5, 161–175 (2015).
-
*High-resolution wind speed measurements using actively heated fiber optics.
Sayde, C., Thomas, C. K., Wagner, J. & Selker, J. Geophys. Res. Lett. n/a–n/a (2015). doi:10.1002/2015GL066729
-
*Application of Distributed Temperature Sensing for coupled mapping of sedimentation processes and spatio-temporal variability of groundwater discharge in soft-bedded streams.
Sebok, E., Duque, C., Engesgaard, P. & Boegh, E. Hydrol. Process. 29, 3408–3422 (2015).
-
*Evaluating the Use of In‐Well Heat Tracer Tests to Measure Borehole Flow Rates
Sellwood, S. M., Hart, D. J., & Bahr, J. M. Groundwater Monitoring & Remediation 35.4: 85-94 (2015)
-
*Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds.
Suarez, F., Tyler, S. & Childress, A. Appl. Energy 158, 532–539 (2015).
-
*Identifying spatial and temporal dynamics of proglacial groundwater–surface-water exchange using combined temperature-tracing methods.
Tristram, D.A., Krause, S., Levy, A., Robinson, Z.P., Waller, R.I. and Weatherill, J.J. Freshw. Sci. 34, 99–110 (2015).
-
*Near-Surface Motion in the Nocturnal, Stable Boundary Layer Observed with Fibre-Optic Distributed Temperature Sensing
Zeeman, M.J., Selker, J.S. & Thomas, C.K. Boundary-Layer Meteorol 154: 189. doi:10.1007/s10546-014-9972-9 (2015)
Back to top
2014
22 CTEMPs supported
-
*Quantity and quality of groundwater discharge in a hypersaline lake environment.
Anderson, R. B. et al. J. Hydrol. 512, 177–194 (2014).
-
*High-resolution temperature sensing in the Dead Sea using fiber optics.
Arnon, A., Lensky, N. G. & Selker, J. S. Water Resour. Res. 50, 1756–1772 (2014).
-
*Correcting artifacts in transition to a wound optic fiber: Example from high-resolution temperature profiling in the Dead Sea.
Arnon, A., Selker, J. & Lensky, N. Water Resour. Res. 50, 5329–5333 (2014).
-
*Induced Temperature Gradients to Examine Groundwater Flowpaths in Open Boreholes.
Banks, E. W., Shanafield, M. A. & Cook, P. G. Groundwater n/a–n/a (2014). 52(6):943-51. doi:10.1111/gwat.12157
-
*Heated fiber optic distributed temperature sensing for measuring soil volumetric heat capacity and water content: A dual probe heat-pulse approach.
Benitez-Buelga, J. B., Sayde, C., Rodriguez-Sinobas, L. & Selker, J. S. Vadose Zo. J. (2014).
-
CCES News 14
News from the CCES Office. ProClim- Flash. No. 61
-
*Life in a fishbowl: Prospects for the endangered Devils Hole pupfish (Cyprinodon diabolis) in a changing climate.
Hausner, M. B. Wilson, K.P., Gaines, D.B., Suárez, F., Scoppettone, G.G. and Tyler, S.W. Water Resour. Res. 50, 7020–7034 (2014).
-
Geophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems.
Hermans, T., Nguyen, F., Robert, T. & Revil, A. Energies 7, 5083–5118 (2014).
-
*Near-surface permeability in a supraglacial drainage basin on the Llewellyn Glacier, Juneau Icefield, British Columbia.
Karlstrom, L., Zok, A. & Manga, M. Cryosph. 8, 537–546 (2014).
-
*Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring.
Kobs, S., Holland, D. M., Zagorodnov, V., Stern, A. & Tyler, S. W. Geophys. Res. Lett. n/a–n/a (2014). doi:10.1002/2014GL061155
-
*Understanding process dynamics at aquifer-surface water interfaces: An introduction to the special section on new modeling approaches and novel experimental technologies.
Krause, S., Boano, F., Cuthbert, M. O., Fleckenstein, J. H. & Lewandowski, J. Water Resour. Res. 50, 1847–1855 (2014).
-
*Reply to comment by J. S. Selker et al. on “Capabilities and limitations of tracing spatial temperature patterns by fiber-optic distributed temperature sensing,
Krause, S., L. Rose, and N. J. Cassidy, (2014). Water Resour. Res. DOI: doi:10.1002/2013WR015209
-
Reply to comment by Francisco Suárez on “Capabilities and limitations of tracing spatial temperature patterns by fiber‐optic distributed temperature sensing”
Krause, S., Rose, L. and Cassidy, N.J. 2014. ater Resources Research, 50(12), 9780-9782.
-
*Seasonal variations in groundwater upwelling zones in a Danish lowland stream analyzed using Distributed Temperature Sensing (DTS).
Matheswaran, K., Blemmer, M., Rosbjerg, D. & Boegh, E. Hydrol. Process. 28, 1422–1435 (2014).
-
*Advancing Groundwater Technology on the Prairie.
Miller, G. D. & Keefer, D. A. Groundwater 52, 651–652 (2014).
-
G. C. Rau, M. S. Andersen, A. M. McCallum et al., “ Heat as a tracer to quantify water flow in near-surface sediments,” Earth-Sci. Rev. 129, 40–58 (2014). https://doi.org/10.1016/j.earscirev.2013.10.015
-
*Active-distributed temperature sensing to continuously quantify vertical flow in boreholes.
Read, T., Bour, O., Selker, J.S., Bense, V.F., Borgne, T.L., Hochreutener, R. and Lavenant, N. . Water Resour. Res. 50, 3706–3713 (2014).
-
*Limitations of fibre optic distributed temperature sensing for quantifying surface water groundwater interactions.
Roshan, H., Young, M., Andersen, M. S. & Acworth, R. I. Hydrol. Earth Syst. Sci. Discuss. 11, 8167–8190 (2014).
-
*Evaporation suppression and solar energy collection in a salt-gradient solar pond.
Ruskowitz, J. A., Suárez, F., Tyler, S. W. & Childress, A. E. Sol. Energy 99, 36–46 (2014).
-
*Mapping variability of soil water content and flux across 1--1000 m scales using the Actively Heated Fiber Optic method.
Sayde, C., J. B. Buelga, L. Rodriguez-Sinobas, L. E. Khoury, M. English, N. van de Giesen, and J. S. Selker. Water Resour. Res. 50, 7302–7317 (2014).
-
*Flume testing of underwater seep detection using temperature sensing on or just below the surface of sand or gravel sediments.
Selker, F. & Selker, J. S. Water Resour. Res. 50, 4530–4534 (2014).
-
*Comment on ‘Capabilities and limitations of tracing spatial temperature patterns by fiber-optic distributed temperature sensing’ by Liliana Rose et al.
Selker, J. S., Tyler, S. & van de Giesen, N. Water Resour. Res. 50, 5372–5374 (2014).
-
*Practical strategies for identifying groundwater discharges into sediment and surface water with fiber optic temperature measurement.
Selker, J. , Selker, F., Huff, J., Short, R., Edwards, D., Nicholson, P., & Chin, A. Env. Sci Process Impacts 16, 1772–1778 (2014).
-
*Understanding the expected performance of large-scale solar ponds from laboratory-scale observations and numerical modeling.
Suárez, F., Ruskowitz, J. A., Childress, A. E. & Tyler, S. W. Appl. Energy 117, 1–10 (2014).
-
Comment on “Capabilities and limitations of tracing spatial temperature patterns by fiber‐optic distributed temperature sensing” by Liliana Rose et al.
Suárez, F., 2014. Water Resources Research, 50(12), 9777-9779.
-
WISSARD at Subglacial Lake Whillans, West Antarctica: Scientific operations and initial observation.
Tulaczyk, S. et al. Ann. Glaciol. 55, 51–58 (2014).
-
*Characterizing preferential groundwater discharge through boils using temperature.
Vandenbohede, A., de Louw, P. G. B. & Doornenbal, P. J. J. Hydrol. 510, 372–384 (2014).
-
*New technique for access-borehole drilling in shelf glaciers using lightweight drills.
Zagorodnov, V., Tyler, S., Holland, D., Stern, A., Thompson, L.G., Sladek, C., Kobs, S. and Nicolas, J.P. J. Glaciol. 60, 935-944 (2014).
Back to top
2013
11 CTEMPs supported
-
Blume T, Krause S, Meinikmann K, Lewandowski J. 2013. Upscaling lacustrine groundwater discharge rates by fiber‐optic distributed temperature sensing. Water Resources Research 49: 7929–7944.
-
*Using distributed temperature sensing fiber-optics and heat source modeling to characterize a Northern California stream's thermal regime
Bond, R. 2013. MS Thesis. Humoldt State University
-
*Modeling insights from distributed temperature sensing data.
Buck, C. R. & Null, S. E. Hydrol. Earth Syst. Sci. Discuss. 10, 9999–10034 (2013).
-
*The shallow thermal regime of Devils Hole, Death Valley National Park.
Hausner, M., K. Wilson, D. Gaines, F. Suarez and S. Tyler. 2013. Limnology and Oceanography: Fluids and Environments.
-
*Autonomous distributed temperature sensing for long-term heated applications in remote areas.
Kurth, A.-M., Dawes, N., Selker, J. & Schirmer, M. Geosci. Instrumentation, Methods Data Syst. 2, 71–77 (2013).
-
*Resolving centimeter-scale flows in aquifers and their hydrostratigraphic controls.
Liu, G., Knobbe, S. & Butler, J. J. Geophys. Res. Lett. 40, 1098–1103 (2013).
-
Mamer, E.A. and Lowry, C.S., 2013. Locating and quantifying spatially distributed groundwater/surface water interactions using temperature signals with paired fiber‐optic cables. Water Resources Research, 49(11), pp.7670-7680.
-
*Thermal diffusivity of seasonal snow determined from temperature profiles
Oldroyd, H.J., C.W. Higgins, H. Huwald, J.S. Selker, and M.B. Parlange. Ad. Water Resourc., ISSN 0309-1708, 10.1016/j.advwatres.2012.06.011. 2013.
-
*Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing.
Read, T., O. Bour, V. Bense, T. Le Borgne, P. Goderniaux, M.V. Klepikova, R. Hochreutener, N. Lavenant, and V. Boschero Geophys. Res. Lett. 40, 2055–2059 (2013).
-
*Capabilities and limitations of tracing spatial temperature patterns by fiber-optic distributed temperature sensing.
Rose, L., Krause, S. & Cassidy, N. J. Water Resour. Res. 49, 1741–1745 (2013).
-
Sebok E, Duque C, Kazmierczak J, Engesgaard P, Nilsson B, Karan S, Frandsen M. 2013. High‐resolution distributed temperature sensing to detect seasonal groundwater discharge into Lake Væng, Denmark. Water Resources Research 49: 5355–5368
-
*Intrusion of warm surface water beneath the McMurdo Ice Shelf, Antarctica.
Stern, A., M. Dinnimin, S. Tyler, V. Zagarodnov and D. Holland. 2013. Jour. Geophys. Research-Oceans. DOI: 10.1002/2013JC008842.
-
*Using Distributed Temperature Sensors to monitor an Antarctic ice shelf and sub-ice-shelf cavity.
Tyler, S.W., W., D. Holland, V. Zagorodnov, A. Stern, C. Sladek, S. Kobs, W. White, F. Suárez and J. Bryenton. 2013. Jour. Of Glaciology. doi:10.3189/2013JoG12J207.
-
*Spatio-temporal variability in groundwater discharge and contaminant fluxes along a channelized stream in western Kentucky
Tripathy, G. N. 2013. U of Kentucky, Lexington, PhD dissertation.
-
Van Emmerik, T.H.M., Rimmer, A., Lechinsky, Y., Wenker, K.J.R., Nussboim, S. and Van de Giesen, N.C., 2013. Measuring heat balance residual at lake surface using Distributed Temperature Sensing. Limnology and Oceanography: Methods, 11(2), pp.79-90.
Back to top
2012
8 CTEMPs supported
-
A comparison of fibre-optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams
Briggs, M. A.; Lautz, L. K.; McKenzie, J. M.. 2012. DOI: 10.1002/hyp.8200 Hydrologic Processes
-
Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux
-
Briggs, M. A., L. K. Lautz, J. M. McKenzie, R. P. Gordon, and D. K. Hare. 2012, Water Resour. Res., 48, W02527, DOI:10.1029/2011WR011227.
-
*Identifying distinct thermal components of a creek
Boughton, D. A., C. Hatch, and E. Mora (2012), Water Resour. Res., 48, W09506, doi:10.1029/2011WR011713
-
Ciocca, F.; Lunati, I.; Van de Giesen, N.; Parlange, M.B. Heated Optical Fiber for Distributed Soil-Moisture Measurements: A Lysimeter Experiment. Vadose Zone J. 2012, 11.
-
Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program
Gordon R. P.; Lautz L. K.; Briggs M. A. 2012. DOI: 10.1016/j.jhydrol.2011.11.053, Journal of Hydrology
-
*Interpreting seasonal convective mixing in Devils Hole, Death Valley National Park, from temperature profiles observed by fiber-optic distributed temperature sensing
Hausner, M. B., K. P. Wilson, D. B. Gaines, and S. W. Tyler. 2012 , Water Resour. Res., 48, W05513, DOI:10.1029/2011WR010972.
-
*Active thermal tracer tests for improved hydrostratigraphic characterization.
Leaf, A. T., D. J. Hart and J. M. Bahr (2012), Groundwater, 50: 726–735. doi: 10.1111/j.1745-6584.2012.00913.x
-
*Using Fiber-Optic Distributed Temperature Sensing to Measure Ground Surface Temperature in Thinned and Unthinned Forests
Lutz, J.A., K.A. Martin, and J.D. Lundquist (2012). Northwest Science, 86(2):108-121, DOI.org/10.3955/046.086.0203.
-
*Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data
Mwakanyamale, K., L. Slater, F. Day-Lewis, M. Elwaseif, and C. Johnson (2012), Geophys. Res. Lett., 39, L06401, DOI:10.1029/2011GL050824.
-
*Heated distributed temperature sensing for field scale soil moisture monitoring.
Striegl, A. M., and S. P. Loheide. 2012. DOI: 10.1111/j.1745-6584.2012.00928.x Groundwater
-
*High-resolution fibre-optic temperature sensing: A New tool to study the two-dimensional structure of atmospheric surface layer flow
Thomas, C.K., A.M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro and M. J. Zeeman. 2011. DOI 10.1007/s10546-011-9672-7. Boundary-Layer Meteorology
-
*Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data
van de Giesen N., Steele-Dunne, S. Jansen, J, Hoes, O., Hausner, M.B., Tyler, S.W. and J. Selker. Sensors. 2012, 12 (5), 5471-5485; doi:10.3390/s120505471
Back to top
2011
7 CTEMPs supported
-
Distributed temperatures sensing (DTS) as a hydrostratigraphic characterization tool.
Bahr, J. M., D. J. Hart and A.T. Leaf. 2011. Final report to the Wisconsin Department of Natural Resources, Open File Report 2011-01
-
*Geothermal point sources identified in a fumarolic ice cave on Erebus volcano, Antarctica using fiber optic distributed temperature sensing,
Curtis, A., and P. Kyle. 2011, DOI:10.1029/2011GL048272. Geophys. Res. Lett.
-
*Calibrating Single-Ended Fiber-Optic Raman Spectra Distributed Temperature Sensing Data
Hausner, M., Suarez, F., Glander, K., van de Giesen, N., Selker, J., Tyler, S. 2011, DOI:10.3390/s111110859 Sensors
-
Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height
Keller, C. A., Huwald, H., Vollmer, M. K., Wenger, A., Hill, M., Parlange, M. B., and Reimann, S. 2011. DOI:10.5194/amt-4-143-2011 Atmos. Meas. Tech.
-
*Shade estimation over streams using distributed temperature sensing,
Petrides, A. C., J. Huff, A. Arik, N. van de Giesen, A. M. Kennedy, C. K. Thomas, and J. S. Selker. 2011. W07601, DOI:10.1029/2010WR009482. Water Resources Research
-
*Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment
Suárez, F., J. E. Aravena, M. B. Hausner, A. E. Childress, and S. W. Tyler. 2011. Hydrol. Earth Syst. Sci., 15, 1081-1093.
-
*Heat Transfer in the Environment: Development and Use of Fiber-Optic Distributed Temperature Sensing
Suarez, F., M. Hausner, J. Dozier, J., J. Selker, J., and S. W. Tyler, 2011. DOI: 10.5772/19474, in Developments in Heat Transfer.
-
*Evolution of superficial lake water temperature profile under diurnal radiative forcing
Vercauteren N.; H. Hendrik; E. Bou-Zeid Elie; J. Selker; U. Lemmin; M.B. Parlange; I. Lunati.4, 2011. DOI: 10.1029/2011WR010529. Water Resources Research
-
*Fiber-Optic and tilt monitoring in the deep underground science and engineering laboratory (DUSEL)
Wang, H., D. Fratta, M. MacLaughlin and L. Murdoch (2011), Lead, SD, NSF CMMI Research and Innovation Conference, Atlanta.
Back to top
2010
5 CTEMPs supported
-
*Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics.
Fleckenstein, J.H., Krause, S., Hannah, D.M. and Boano, F., 2010. Advances in Water Resources, 33(11), pp.1291-1295.
-
*Solar radiative heating of fiber-optic cables used to monitor temperatures in water
Neilson, B.T., C.E. Hatch and S.W. Tyler. 2010 . DOI:10.1029/2009WR008354. Water Resources Res.
-
*Feasibility of Soil Moisture Monitoring with Heated Fiber Optics
Sayde , C., C. Gregory, M. Gil-Rodriguez, N. Tufillaro, S. Tyler, N. van de Giesen, M. English, R. Cuenca, and J. S. Selker (2010), Water Resour. Res., 46, W06201, DOI:10.1029/2009WR007846.
-
Use of electrical imaging and distributed temperature sensing methods to characterize surface water–groundwater exchange regulating uranium transport at the Hanford 300 Area Washington
Slater, L. D., D. Ntarlagiannis, F. D. Day-Lewis, K. Mwakanyamale, R. J. Versteeg, A. Ward, C. Strickland, C. D. Johnson, and J. W. Lane Jr., 2010., 46, W10533, DOI:10.1029/2010WR009110. Water Resour. Res.
-
*Feasibility of Soil Moisture Estimation Using Passive Distributed Temperature Sensing
Steele-Dunne, S. C., M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, and N. C. van de Giesen (2010), Water Resour. Res., 46, W03534, DOI:10.1029/2009WR008272.
-
Suárez, F., Childress, A.E. and Tyler, S.W., 2010. Temperature evolution of an experimental salt-gradient solar pond. Journal of Water and Climate Change, 1(4), pp.246-250.
-
Estimation of Seepage Rates in a Losing Stream by Means of Fiber-Optic High-Resolution Vertical Temperature Profiling
Vogt, T.; Philipp Schneider, Lisa Hahn-Woernle, Olaf A. Cirpka, Journal of Hydrology, Volume 380, Issues 1-2, 15 January 2010, Pages 154-164, ISSN 0022-1694, DOI: 10.1016/j.jhydrol.2009.10.033.
-
*Deep underground instrumentation and monitoring
Wang, H.F., Gage, J.R., Fratta, D., Maclaughlin, M., Murdoch, L.C. and Tokunaga, T., 2010, January. In ISRM International Symposium-6th Asian Rock Mechanics Symposium. International Society for Rock Mechanics and Rock Engineering.
-
Westhoff, M.C., Bogaard, T.A. and Savenije, H.H.G., 2010. Quantifying the effect of in-stream rock clasts on the retardation of heat along a stream. Advances in water resources, 33(11), pp.1417-1425.
Back to top
2009
1 CTEMPs supported
-
Investigation of Aquifer-Estuary Interaction Using Wavelet Analysis of Fiber Optic Temperature Data
Henderson, R. D. , F. D. Day-Lewis, and C. F. Harvey (2009), Geophys. Res. Lett., 36, L06403, DOI:10.1029/2008GL036926.
-
Locating Illicit Connections in Storm Water Sewers Using Fiber-Optic Distributed Temperature Sensing
Hoes, O.A.C, R.P.S. Schilperoort, W.M.J. Luxemburg, F.H.L.R. Clemens and N. C. van de Giesen (2009), Water Research, DOI:10.1016/j.watres.2009.08.020.
-
Identifying seepage in ditches and canals and polders in the Netherlands by distributed temperature sensing
Hoes, O., W.M.J Luxemburg, M.C. Westhof, N. C. van de Giesen, N. and J.Selker. Lowland Technology International Vol. 11, No.2
-
Fibre-optic distributed temperature sensing in combined sewer systems
Schilperoort R. P. S.; and F. H. L. R.Clemens, 2009. DOI: 10.2166/wst.2009.467 Water Science and Technology.
-
*New User Facility for Environmental Sensing
Tyler, S., J. Selker, 2009. EOS Vol. 90 No. 50. p. 483.
-
Environmental Temperature Sensing Using Raman Spectra DTS Fiber-Optic Methods
Tyler, S.W., J.S. Selker, M.B. Hausner, C.E. Hatch, T. Torgersen and S. Schladow.2009. Water Resources Res. DOI:10.1029/2008WR007052 4(187):673-679.
Back to top
2008
-
Fiber Optics for Environmental Sensing
Selker, J.S., Sensors, May 2008
-
Ground Surface Temperature Reconstructions: Using In-Situ Estimates for Thermal Conductivity Acquired with a Fiber-Optic Distributed Thermal Perturbation Sensor
B. M. Freifeld, S. Finsterle, T. C. Onstott, P. Toole, and L. M. Pratt (2008), Geophys. Res. Lett., 35, L14309, DOI:10.1029/2008GL034762.
-
Processes Controlling the Thermal Regime of Saltmarsh Channel Beds
Moffett, K., S. Tyler, T. Torgersen, M. Menon, J. Selker and S. Gorelick. 2008, Environ. Science and Tech. 42(3); 671-676. DOI: 10.1021/es071309m.
-
Spatially Distributed Temperatures at the Base of Two Mountain Snowpacks Measured with Fiber-Optic Sensors
Tyler, S.W., S. Burak, J. McNamara, A. Lamontagne, J. Selker and J. Dozier. 2008. Journal of Glaciology. 54(187):673-679.
-
Taking the Temperature of Ecological Systems with Fiber Optics
Selker, J. (2008), EOS, 89 (20).
Back to top
2007
-
A Distributed Stream Temperature Model Using High Resolution Temperature Observations
M. C. Westhoff, H. H. G. Savenije, W. M. J. Luxemburg, G. S. Stelling, N. C. van de Giesen, J. S. Selker, L. Pfister, and S. Uhlenbrook (2007) Hydrol. Earth Syst. Sci., 11, 1469-1480.
-
Identifying Spatial Variability of Groundwater Discharge in a Wetland Stream Using a Distributed Temperature Sensor
Lowry, C.S., J. F. Walker, R. J. Hunt, and M. P. Anderson (2007), Water Resour. Res., 43, W10408, DOI:10.1029/2007WR006145.
Back to top
2006
-
A Distributed Optical Fiber Sensor for Temperature Detection in Power Cables
Yilmaz, Gunes; Karlik, Sait Eser, Sensors and Actuators A 125 (2006) 148-155.
-
Distributed Fiber-Optic Temperature Sensing for Hydrologic Systems
Selker, J.S., L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. Van de Geisen, M. Stejskal, J. Zeman, M. Westoff and M.B. Parlange, (2006), Water Resour. Res., 42, W12202, DOI:10.1029/2006WR005326.
-
Fiber Optics Opens Window on Stream Dynamics
J. Selker, N. van de Giesen, M. Westhoff, W. Luxemburg, and M. B. Parlange (2006), Geophys. Res. Lett., 33, L24401, DOI:10.1029/2006GL027979.
-
S. P. Loheide and S. M. Gorelick, “Quantifying stream− aquifer interactions through the analysis of remotely sensed thermographic profiles and in situ temperature histories,” Environ. Sci. Technol. 40(10), 3336–3341 (2006). https://doi.org/10.1021/es052207
Back to top
2005
Back to top