Jump to year: 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017

2017

  • Feasibility of Locating Leakages in Sewage Pressure Pipes Using the Distributed Temperature Sensing Technology.
    Apperl, Benjamin, Alexander Pressl, and Karsten Schulz, Water, Air, & Soil Pollution 2, no. 228 (2017): 1-13.
  • Quantitative analysis of the radiation error for aerial coiled-fiber-optic distributed temperature sensing deployments using reinforcing fabric as support structure.
    Sigmund, Armin, Lena Pfister, Chadi Sayde, and Christoph K. Thomas, Atmospheric Measurement Techniques 10, no. 6 (2017): 2149.
  • Failure of Taylor's hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements.
    Cheng, Y., C. Sayde, Q. Li, J. Basara, J.S. Selker, E. Tanner, P. Gentine, Geophys. Res. Lett., 10.1002/2017GL073499, in press, 2017.
  • Air/water/sediment temperature contrasts in small streams to identify groundwater seepage locations.
    Karan, Sachin, Eva Sebok, and Peter Engesgaard, Hydrological Processes 31, no. 6 (2017): 1258-1270.
  • Observations of bedload transport in a gravel bed river during high flow using fiber‐optic DTS methods.
    Bray, Erin N., and Thomas Dunne, Earth Surface Processes and Landforms, doi:10.1002/esp.4164, 2017.

Back to top

2016

Back to top

2015

Back to top

2014

  • Quantity and quality of groundwater discharge in a hypersaline lake environment.
    Anderson, R. B. et al. J. Hydrol. 512, 177–194 (2014).
  • High-resolution temperature sensing in the Dead Sea using fiber optics.
    Arnon, A., Lensky, N. G. & Selker, J. S. Water Resour. Res. 50, 1756–1772 (2014).
  • Correcting artifacts in transition to a wound optic fiber: Example from high-resolution temperature profiling in the Dead Sea.
    Arnon, A., Selker, J. & Lensky, N. Water Resour. Res. 50, 5329–5333 (2014).
  • Induced Temperature Gradients to Examine Groundwater Flowpaths in Open Boreholes.
    Banks, E. W., Shanafield, M. A. & Cook, P. G. Groundwater n/a–n/a (2014). doi:10.1111/gwat.12157
  • Heated fiber optic distributed temperature sensing for measuring soil volumetric heat capacity and water content: A dual probe heat-pulse approach.
    Buelga, J. B., Sayde, C., Rodriguez-Sinobas, L. & Selker, J. S. Vadose Zo. J. (2014).
  • CCES News 14
    News from the CCES Office. ProClim- Flash. No. 61
  • Life in a fishbowl: Prospects for the endangered Devils Hole pupfish (Cyprinodon diabolis) in a changing climate.
    Hausner, M. B. et al. Water Resour. Res. 50, 7020–7034 (2014).
  • Geophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems.
    Hermans, T., Nguyen, F., Robert, T. & Revil, A. Energies 7, 5083–5118 (2014).
  • Near-surface permeability in a supraglacial drainage basin on the Llewellyn Glacier, Juneau Icefield, British Columbia.
    Karlstrom, L., Zok, A. & Manga, M. Cryosph. 8, 537–546 (2014).
  • Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring.
    Kobs, S., Holland, D. M., Zagorodnov, V., Stern, A. & Tyler, S. W. Geophys. Res. Lett. n/a–n/a (2014). doi:10.1002/2014GL061155
  • Understanding process dynamics at aquifer-surface water interfaces: An introduction to the special section on new modeling approaches and novel experimental technologies.
    Krause, S., Boano, F., Cuthbert, M. O., Fleckenstein, J. H. & Lewandowski, J. Water Resour. Res. 50, 1847–1855 (2014).
  • Seasonal variations in groundwater upwelling zones in a Danish lowland stream analyzed using Distributed Temperature Sensing (DTS).
    Matheswaran, K., Blemmer, M., Rosbjerg, D. & Boegh, E. Hydrol. Process. 28, 1422–1435 (2014).
  • Advancing Groundwater Technology on the Prairie.
    Miller, G. D. & Keefer, D. A. Groundwater 52, 651–652 (2014).
  • Distributed Acoustic Sensing - a new toold for seismic applications.
    Parker, T., Shatalin, S. and Farhadisroushan, M. 2014. firstbreak.org, volume 32.
  • Active-distributed temperature sensing to continuously quantify vertical flow in boreholes.
    Read, T. et al. Water Resour. Res. 50, 3706–3713 (2014).
  • Limitations of fibre optic distributed temperature sensing for quantifying surface water groundwater interactions.
    Roshan, H., Young, M., Andersen, M. S. & Acworth, R. I. Hydrol. Earth Syst. Sci. Discuss. 11, 8167–8190 (2014).
  • Evaporation suppression and solar energy collection in a salt-gradient solar pond.
    Ruskowitz, J. A., Suárez, F., Tyler, S. W. & Childress, A. E. Sol. Energy 99, 36–46 (2014).
  • Mapping variability of soil water content and flux across 1--1000 m scales using the Actively Heated Fiber Optic method.
    Sayde, C. et al. Water Resour. Res. 50, 7302–7317 (2014).
  • Flume testing of underwater seep detection using temperature sensing on or just below the surface of sand or gravel sediments.
    Selker, F. & Selker, J. S. Water Resour. Res. 50, 4530–4534 (2014).
  • Comment on ‘Capabilities and limitations of tracing spatial temperature patterns by fiber-optic distributed temperature sensing’ by Liliana Rose et al.
    Selker, J. S., Tyler, S. & van de Giesen, N. Water Resour. Res. 50, 5372–5374 (2014).
  • Practical strategies for identifying groundwater discharges into sediment and surface water with fiber optic temperature measurement.
    Selker, J. et al. Env. Sci Process Impacts 16, 1772–1778 (2014).
  • Understanding the expected performance of large-scale solar ponds from laboratory-scale observations and numerical modeling.
    Suárez, F., Ruskowitz, J. A., Childress, A. E. & Tyler, S. W. Appl. Energy 117, 1–10 (2014).
  • WISSARD at Subglacial Lake Whillans, West Antarctica: Scientific operations and initial observation.
    Tulaczyk, S. et al. Ann. Glaciol. 55, 51–58 (2014).
  • Characterizing preferential groundwater discharge through boils using temperature.
    Vandenbohede, A., de Louw, P. G. B. & Doornenbal, P. J. J. Hydrol. 510, 372–384 (2014).
  • New technique for access-borehole drilling in shelf glaciers using lightweight drills.
    Zagorodnov, V. et al. J. Glaciol. 60, (2014).

Back to top

2013

Back to top

2012

Back to top

2011

Back to top

2010

  • Effects of solar radiative heating on fiber optic cables used in aquatic sttings
    Neilson, B.T., C.E. Hatch and S.W. Tyler. 2010 . DOI:10.1029/2009WR008354. Water Resources Res.
  • Feasibility of Soil Moisture Estimation Using Passive Distributed Temperature Sensing
    Steele-Dunne, S. C., M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, and N. C. van de Giesen (2010), Water Resour. Res., 46, W03534, DOI:10.1029/2009WR008272.
  • Feasibility of Soil Moisture Monitoring with Heated Fiber Optics
    Sayde , C., C. Gregory, M. Gil-Rodriguez, N. Tufillaro, S. Tyler, N. van de Giesen, M. English, R. Cuenca, and J. S. Selker (2010), Water Resour. Res., 46, W06201, DOI:10.1029/2009WR007846.
  • Estimation of Seepage Rates in a Losing Stream by Means of Fiber-Optic High-Resolution Vertical Temperature Profiling
    Vogt, T.; Philipp Schneider, Lisa Hahn-Woernle, Olaf A. Cirpka, Journal of Hydrology, Volume 380, Issues 1-2, 15 January 2010, Pages 154-164, ISSN 0022-1694, DOI: 10.1016/j.jhydrol.2009.10.033.
  • Use of electrical imaging and distributed temperature sensing methods to characterize surface water–groundwater exchange regulating uranium transport at the Hanford 300 Area Washington
    Slater, L. D., D. Ntarlagiannis, F. D. Day-Lewis, K. Mwakanyamale, R. J. Versteeg, A. Ward, C. Strickland, C. D. Johnson, and J. W. Lane Jr., 2010., 46, W10533, DOI:10.1029/2010WR009110. Water Resour. Res.

Back to top

2009

  • Environmental Temperature Sensing Using Raman Spectra DTS Fiber-Optic Methods
    Tyler, S.W., J.S. Selker, M.B. Hausner, C.E. Hatch, T. Torgersen and S. Schladow.2009. Water Resources Res. DOI:10.1029/2008WR007052 4(187):673-679.
  • Investigation of Aquifer-Estuary Interaction Using Wavelet Analysis of Fiber Optic Temperature Data
    R. D. Henderson, F. D. Day-Lewis, and C. F. Harvey (2009), Geophys. Res. Lett., 36, L06403, DOI:10.1029/2008GL036926.
  • Locating Illicit Connections in Storm Water Sewers Using Fiber-Optic Distributed Temperature Sensing
    Hoes, O.A.C, R.P.S. Schilperoort, W.M.J. Luxemburg, F.H.L.R. Clemens and N. C. van de Giesen (2009), Water Research, DOI:10.1016/j.watres.2009.08.020.
  • New User Facility for Environmental Sensing
    Tyler, S., J. Selker, 2009. EOS Vol. 90 No. 50. p. 483.
  • Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data
    Henderson, R. D., F. D. Day-Lewis, and C. F. Harvey , 2009. DOI:10.1029/2008GL036926. Geophys. Res. Lett.
  • Fibre-optic distributed temperature sensing in combined sewer systems
    Schilperoort R. P. S.; and F. H. L. R.Clemens, 2009. DOI: 10.2166/wst.2009.467  Water Science and Technology.
  • Identifying seepage in ditches and canals and polders in the Netherlands by distributed temperature sensing
    O., W.M.J Luxemburg, M.C. Westhof, N. C. van de Giesen, N. and J.Selker

Back to top

2008

  • Fiber Optics for Environmental Sensing
    Selker, J.S., Fiber Optics for Environmental Sensing. Sensors, May 2008
  • Ground Surface Temperature Reconstructions: Using In-Situ Estimates for Thermal Conductivity Acquired with a Fiber-Optic Distributed Thermal Perturbation Sensor
    B. M. Freifeld, S. Finsterle, T. C. Onstott, P. Toole, and L. M. Pratt (2008), Geophys. Res. Lett., 35, L14309, DOI:10.1029/2008GL034762.
  • Processes Controlling the Thermal Regime of Saltmarsh Channel Beds
    Moffett, K., S. Tyler, T. Torgersen, M. Menon, J. Selker and S. Gorelick. 2008, Environ. Science and Tech. 42(3); 671-676. DOI: 10.1021/es071309m.
  • Spatially Distributed Temperatures at the Base of Two Mountain Snowpacks Measured with Fiber-Optic Sensors
    Tyler, S.W., S. Burak, J. McNamara, A. Lamontagne, J. Selker and J. Dozier. 2008. Journal of Glaciology. 54(187):673-679.
  • Taking the Temperature of Ecological Systems with Fiber Optics
    Selker, J. (2008), EOS, 89 (20).

Back to top

2007

  • A Distributed Stream Temperature Model Using High Resolution Temperature Observations
    M. C. Westhoff, H. H. G. Savenije, W. M. J. Luxemburg, G. S. Stelling, N. C. van de Giesen, J. S. Selker, L. Pfister, and S. Uhlenbrook (2007) Hydrol. Earth Syst. Sci., 11, 1469-1480.
  • Identifying Spatial Variability of Groundwater Discharge in a Wetland Stream Using a Distributed Temperature Sensor
    Lowry, C.S., J. F. Walker, R. J. Hunt, and M. P. Anderson (2007), Water Resour. Res., 43, W10408, DOI:10.1029/2007WR006145.

Back to top

2006

  • A Distributed Optical Fiber Sensor for Temperature Detection in Power Cables
    Yilmaz, Gunes; Karlik, Sait Eser, Sensors and Actuators A 125 (2006) 148-155.
  • Distributed Fiber-Optic Temperature Sensing for Hydrologic Systems
    Selker, J.S., L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. Van de Geisen, M. Stejskal, J. Zeman, M. Westoff and M.B. Parlange, (2006), Water Resour. Res., 42, W12202, DOI:10.1029/2006WR005326.
  • Fiber Optics Opens Window on Stream Dynamics
    J. Selker, N. van de Giesen, M. Westhoff, W. Luxemburg, and M. B. Parlange (2006), Geophys. Res. Lett., 33, L24401, DOI:10.1029/2006GL027979.

Back to top

2005

Back to top