Distributed Temperature Sensing - DTS

Enabling fast, reliable and cost-effective sensing through highly integrated optical measurement systems

• Fire detection
• Power cable monitoring
• Oil & Gas downhole performance monitoring
• Pipeline leakage detection
Advantages of fiber based distributed temperature sensing over electrical probes

We have tested the AP Sensing DTS instrument in a special hazard application and are very impressed. AP Sensing rigorously designed the quality into the product. The level of integration and unique optical assembly technology ensures repeatable, accurate measurements and easy deployment.

Dr. Grosswig, CEO GESO

If you strive for increased productivity or safety in a variety of application areas, you can gain insight into your processes by using an optical fiber as a sensing element. The fiber is the only sensing solution that leaves no area unmonitored and is intrinsically safe (EMI).

The DTS instrument utilizes the Raman effect to measure temperature. An optical laser pulse propagating through the fiber gets scattered light back to the transmitting end, where it is analyzed. The intensity of the Raman scattering is a measure for the temperature along the fiber. The position of the temperature reading is determined by measuring the arrival timing of the returning light pulse similar to a radar echo.

- Worry-free permanent monitoring
- Reduced cost of operation
- Increased efficiency
Reservoir performance monitoring

Today’s Oil & Gas reservoir management requires real time, continuous downhole monitoring to optimize the economic and operational performance of the assets (intelligent well). Through real-time understanding of the production and injection dynamics, the reservoir engineer is able to optimize production and maximize recovery, helping to improve profit.

Analysis of DTS data and geothermal gradient gives deep insight into the well behavior allowing the determination of flow volume and changes per sections. This next-generation DTS technology provides economical solutions even for low-producing wells. This allows to enable the move from retrievable temperature measurement services to permanent installations.

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor housing (IP66 /~NEMA 4) Operating temp. range of -40° to 60°C (-40° to 140°F)</td>
<td>Cost effective deployment, no extra cooling or buildings required</td>
</tr>
<tr>
<td></td>
<td>Withstands rain, dust, heat, shock and vibration</td>
</tr>
<tr>
<td>Ultra low power consumption (~15 W)</td>
<td>Suitable for solar panel operation</td>
</tr>
<tr>
<td></td>
<td>Cost effective power source</td>
</tr>
<tr>
<td>Real-time measurement with high temperature and spatial resolution (up to 0.1 °C; 1 m) Extremely high measurement repeatability for indoor and outdoor environments.</td>
<td>Sensitive well analysis over long periods</td>
</tr>
<tr>
<td></td>
<td>Detecting water breakthroughs and reservoir trends more effectively than intervention-based monitoring</td>
</tr>
<tr>
<td>Integrated switch and autonomous scheduling functionality</td>
<td>Multiple well monitoring</td>
</tr>
<tr>
<td>Standard interfaces, integrated trace memory</td>
<td>Very cost effective network solution and easy integration</td>
</tr>
<tr>
<td>Industry-leading quality and long life-time</td>
<td>Reduces cost of service and support</td>
</tr>
</tbody>
</table>
Modern pipeline management needs to assure pipeline integrity, immediate leakage detection and risk mitigation. AP Sensing’s DTS provides the capability to monitor the entire downstream process at once, identifies and localizes leakages even in hazardous processes. The continuous sensor element (fiber) leaves no area unmonitored, for the maximum level of coverage.

In case of a gas pipeline leakage a cold spot occurs (Joule Thomson effect). Leaks in a chemical pipe are typically recognized by a hot spot.

### Features

- Real-time leakage detection, high temperature and spatial measurement resolution (0.1 °C; 1 m) Extremely high measurement repeatability
- Outdoor housing (IP66 /~ NEMA 4) Operating temp. range of -40° to 60°C (-40° to 140°F)
- Ultra low power consumption
- Integrated switch and autonomous scheduling functionality
- Standard interfaces, integrated trace memory

### Benefits

- Reliable detection of smallest leakages
- Identification of changes in the process environment, resulting in process optimizations, increased production and process efficiency
- Protects employee safety, reduces downtime and minimizes loss
- Cost effective deployment no extra cooling or buildings required
- Solar panel operation suitable
- Cost effective power source
- Dual direction measurement or multiple pipeline coverage
- Effective network solution and easy integration into pipeline management control systems
Power cable monitoring

Distributed temperature monitoring provides continuous monitoring of high power cable temperatures, detecting hot spots, delivering operational status, condition assessment and power circuit rating data. This helps operators to optimize the transmission and distribution networks, and reduce cost of operation and capital.

The sensing fiber is either embedded in the power cable, close to the conductors or deployed along the outside of the cable. It is intrinsically immune to electromagnetic interference and provides reliable temperature measurements, ideal for use in a high voltage environment.

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operator can define alarm conditions, structure the cable into zones</td>
<td>Monitoring of the alarm conditions protects power cable investment, by insuring “in limit” operation, avoiding unplanned network failures and assisting in contingency planning</td>
</tr>
<tr>
<td>and set corresponding actions</td>
<td></td>
</tr>
<tr>
<td>Real-time data, high temperature and spatial measurement resolution (0.1 °C; 1 m)</td>
<td>Insight into utilization level, for example, resulting in deferment of capital expenditure or even higher utilization Hotspot detection, localization and display on the connected PC for optimization and confirmation of cable design and installation</td>
</tr>
<tr>
<td>High measurement repeatability</td>
<td></td>
</tr>
<tr>
<td>Optical fiber</td>
<td>EMI proof, no electrical or moving parts, easy deployment to existing and new assets</td>
</tr>
<tr>
<td>Integrated switch and autonomous scheduling functionality</td>
<td>Multiple power cable coverage</td>
</tr>
<tr>
<td>Standard interfaces</td>
<td>Easy system integration into power cable control systems The online-generated data can also be integrated into a real-time thermal rating system or database</td>
</tr>
<tr>
<td>Industry-leading quality and long life-time</td>
<td>Reduces cost of service and support</td>
</tr>
</tbody>
</table>

- Power cable tunnels
- Underground power cables
- Submarine power cables
- Substation equipment
- Overhead lines
Fire Detection

Safety systems demand highly reliable and extremely quick heat detection. Especially in hazardous environments, solutions need to be immune from interference or false alarms. They also have to continue monitoring irrespective of the enormous heat generated and the rapid spread of smoke.

Fiber-based linear heat detection is especially suitable for fire detection as it leaves no area unmonitored and displays the real-time temperature development and heat transport of the entire area at once. It can even automatically actuate the protective systems in the affected zones.

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast, accurate and reliable fire detection</td>
<td>Highest security and lowest downtime. Reduced number of deceptive alarms, even in hazardous environments, as well as reduced service and support costs</td>
</tr>
<tr>
<td>Industry-leading quality and life-time</td>
<td>Precise and selective activation of fire distinguishing systems, addressing only the effected area</td>
</tr>
<tr>
<td>Fast, accurate and reliable fire detection</td>
<td>Easy deployment also in cable routes, underground conveyor belts and storage facilities</td>
</tr>
<tr>
<td>Industry-leading quality and life-time</td>
<td>Reduced cost periodic sensor tests and maintenance</td>
</tr>
<tr>
<td>Fiber / Cable:</td>
<td>Valuable information to emergency services indicating how best to deal with any situation. Instruments can also be accessed simultaneously from different locations</td>
</tr>
<tr>
<td>- very robust, resistant to moisture, corrosion, other environmental influences, immune to electrical interference</td>
<td></td>
</tr>
<tr>
<td>- maintenance-free</td>
<td>Worry-free monitoring</td>
</tr>
<tr>
<td>Easy system integration and standard interfaces allow online visualization of fire and heat detection</td>
<td></td>
</tr>
</tbody>
</table>
AP Sensing’s Distributed Temperature Sensing Solutions

Our superior DTS Series targets people like you: reservoir engineers, pipeline operators, high voltage power cable experts and fire detection system installers. We listened to your application-driven requirements, challenges, and your observations with existing DTS solutions. We applied your experiences and requirements to create two innovative complementary sensing solutions.

AP Sensing’s DTS architecture uses a proprietary code correlation technique, which drives high temperature resolution by meeting the 1M Laser Class requirements and avoiding the severe Laser safety implications for each installer and operator that apply to 3B instruments. The heart of the DTS instrument is based on a highly integrated optical building block, hermetically sealed and filled with inert gas, enabling extended operating conditions and preventing condensation on the sensitive optical components.

Long-term measurement stability is powered by an innovative single receiver design, eliminating tracking issues.

The integrated temperature reference design and the temperature stabilized opto-electronics ensure insensitivity to changing operating conditions, superior repeatability over the entire operating temperature range.

The outdoor version is designed for rough environment (IP66 /~NEMA 4), withstanding rain, dust, heat, shock and vibration. The ultra low power consumption of both series enables solar panel powering.

An incorporated switch with a flexible scheduling functionality, trace memory and inside alarm analysis support autonomous sensing and a cost effective e.g. wireless network solution.

Using industry standards for the fiber, computing and programming interface ensures easy integration into existing solutions and infrastructure.

The PC software is easy to handle and intuitive. In a few minutes the user is in a position to perform the first measurements and does not require days of training. The visualization software features set up and calibration, alarm parameterization, tracking and real-time temperature trace display.
AP Sensing is your strategic business partner for success.

AP Sensing inherits more than 20 years of OTDR (Optical Time Domain Reflectometry) expertise. Instruments are based on key technologies and IP from Agilent Technologies (former Hewlett Packard), the global leader in optical measurement and innovator in optical assembly techniques. AP Sensing’s leadership in quality, ruggedness and reliability is based on intelligent design, proven components and decades of experience.

AP Sensing is offering specific solution packages for the various markets. Including standard and specialty sensor cables, application specific software and analysis tools as well as interface modules to feed the DTS data into management and SCADA systems.

With strong commitment and dedication to the DTS technology and the addressed markets we are constantly optimizing our solution package to enable reliable asset protection, optimizing process performance, even in challenging environments. We co-operate with well known and highly recognized partners to complete our offering and to prove the system capabilities in a wide range of monitoring scenarios – for one purpose:

Providing intelligent solutions.

**Our Offering:**

- Distributed Temperature Sensing
- Visualization and Analysis Software
- Interface to Management Systems
- Sensor Cables and Accessories
- Global Service & Support
- Training

For more information on Distributed Temperature Sensing products, applications or services, please contact:

AP Sensing GmbH
Herrenberger Str. 130
71034 Boeblingen, Germany
Tel: + 49 7031 435 5910
Fax: + 49 7031 435 5911

Product specification and descriptions in this document subject to change without notice and are not binding to AP Sensing.